### Conformal compactification of space-time

#### by Willie Wong

I’ve been reading the article “Relativistic Symmetry Groups” by Roger Penrose, which appeared in *Group Theory in Non-Linear Problems: Lectures Presented at the NATO Advanced Study Institute on Mathematical Physics* ed. A.O.Barut (1974). In the article he talked a bit about conformal compactification of space-time. The notion of a conformal infinity is, by now, a pretty standard topic in introductory courses in General Relativity. I mention this article of Penrose because it contains a few small facts which is often not discussed in said courses or textbooks.

**Conformal compactification**

Start with a pseudo-Riemannian manifold , let be another pseudo-Riemannian metric on , we say that and are *conformal* if there exists a positive scalar function on such that (sufficient smoothness of the relevant quantities are always assumed). Observe that two conformal metrics measure angles the same way: recall that on a pseudo-Riemannian manifold , given a point and two non-null vectors , the angle between the vectors can be defined by . (Notice that on Euclidean space, if form an angle , then .) Thus if is conformal to , they define the same angles:

In fact, this inference works the other way too. If are two pseudo-Riemannian metrics such that for any two vectors we have , then are conformal (up to a change of sign) by the above definition (see e.g. Exercise 14, Chapter 2 from B.O’Neill, *Semi-Riemannian Geometry*).

So, in plain English, two metrics are conformal if they measure angles the same way.

Now, let be a pseudo-Riemannian manifold that is non-compact. A conformal compactification of is a choice of a metric such that can be isometrically embedded into a compact domain of a pseudo-Riemannian manifold (well, I am ignoring some regularity issues here). Let be the conformal factor as before. Then observe that any regular extension of to the conformal boundary must vanish on said boundary. This reflects the property of a conformal compactification that “brings infinity to a finite distance”.

The simplest example of conformal compactification is the one-point compactification of Euclidean space via the stereographic projection. In this case, the target manifold is compact itself, taken to be standard sphere. The source manifold is Euclidean space with the standard metric, and the image set is taken to be the sphere minus the north pole.

**Ambient space construction**

Another way to think about conformal compactification is through the lens of the Fefferman-Graham ambient construction (or, more properly speaking, the reverse of that construction; also closely related to the foundations of twistor theory, which also appears in the article of Penrose).

We start by example. Consider the standard Minkowski space with 1 time-dimension and spatial dimensions. The collection of all null-lines through the origin forms the *light cone* , which except for the singularity at the origin is a null hyper-surface. This collection can be naturally associated to the *celestial sphere*: for each spatial direction, which we denote by with , we can associate the null vector .

Now take an arbitrary space-like hypersurface that does not pass through the origin, and consider the intersection . It is clear that must be a space-like submanifold of co-dimension 2, with the topology of the dimensional sphere. Furthermore, a bit of computation shows that the induced metric on will be times the standard metric of the sphere, where is the time coordinate of a point on under the embedding into .

This identification can also be taken the opposite way: let be the standard sphere with the standard metric, then any conformal metric to can be *realized* as a section of the “future half” of the light cone , by taking the point with (using the coordinates of the standard embedding of the standard sphere into Euclidean space) on to the point where is the conformal factor. In other words, the future light cone , seen as a line bundle over , is a realization of the conformal structure of the standard sphere.

The rather neat thing now is that if we take, instead of a space-like slice , the null plane , the cut becomes a paraboloid, which under a small change of coordinates is isometric to the flat Euclidean space of dimensions. This change of coordinates is precisely the stereographic projection!

So far the material presented is more or less standard.

**Ambient space construction for Minkowski space**

In the previous section we compactified Euclidean space. Now we ask if something similar can be done to Minkowski space. The answer, as it turns out, is yes. The first fact to observe is the following: given an arbitrary pseudo-Riemannian manifold , we can trivially embed it in a manifold of two higher dimensions by adjoining a time-like and a space-like dimension as follows: let and let the metric on be the product metric where the latter component is the standard (1+1) dimensional Minkowski metric. Now take the null hypersurface given by where are the standard time-space coordinates on . Observe the following: under this construction, any horizontal slice of will be isometric to .

Now one may be tempted to try and compactify arbitrary non-compact Riemannian manifolds. Comparing the situation in the paragraph above with the compactification of the Euclidean space, we see that in order to exploit the null cone structure, it is necessary that the set of all null-rays in the ambient space emanating from a fixed point must not refocus at a later time (remember it is by traveling along the null geodesics that we identify points on the compact manifold with the non-compact manifold). Using the fact that a geodesic on a product manifold projects down to geodesics on each multiplicand, we see that this condition is equivalent to asking that the manifold has infinite injectivity radius at the point . Furthermore, in order for the compactification to be defined for all points on , it is necessary that for any point , can be joined to with a geodesic. The two conditions together imply that should have a point at which the exponential map defines a global diffeomorphism between and . This occurs, for example, when has non-positive curvature and is simply connected. But this by itself is not enough. To use the construction of the previous section, itself has to admit a scaling symmetry about the point . More precisely, we need that the radial vector field be a conformal isometry of . This is to guarantee that the various sections of the null cone in are conformal to each other. So together we know the following must be true of : it is topologically , and we can pick to be the origin. The metric can be written in radial coordinates as , where is a fixed metric on the sphere . But regularity at the origin will impose the condition that is in fact the standard metric, which means that the method given only works for Euclidean space.

Getting back to Minkowski space though: observe that Minkowski space also has the conformal symmetry: the vector field generates a “radial” conformal isometry, where now is the spatial radial direction. So the construction will go through. (We can actually do this for arbitrary signature flat space . Here we’ll just work with Minkowski space.) To recap: we’ve embedding into , which we parametrize by , where are time-like and the rest space-like, with parametrizing the original Minkowski space. The null “cone” now becomes the set . We see that the intersection of the null cone with the set is a horizontal slice, and is intrinsically isometric to the standard Minkowski space.

Now the question is how to get a compact section of this null “cone”. If we intersect with the plane , we see that the set is now parametrized by , which is a hyperboloid! The coordinates remains unbounded, so it is not a good choice. Similarly if we intersect with the plane . In fact, these two slices corresponds to the *de Sitter* and *anti-de Sitter* space respectively. The trick, as noted by Penrose in his article, is to intersect the null “cone” against the 5 dimensional sphere given by . The intersection now, after simple algebraic manipulations, satisfies

and

which implies that it is topologically .

Unlike the case of the compactification of Euclidean space, this object is not the closure of the image of the Minkowski space. In fact, it is a double cover! One way to see it is that each null line is twice-represented in : the points and are two distinct points in that corresponds to the same null line. Another way to see this is that the 5 dimensional sphere we use for the intersection not only has a piece in the part of the ambient space where , it also has a piece where . Therefore an accurate model for this in the Euclidean case is also to intersect with a sphere: but since the forward and backward light cones are essentially disconnected, we'll pick up a "double cover" in the sense that we end up with two copies of the standard sphere.

**Connection to the Carter-Penrose diagram**

Now you ask: “Wait a second here! What happened to the conformal infinities that we learned about in schools? The future and past null infinities and such? How do they fit into the picture?” Well, as is clear from the Carter-Penrose diagram, the usual conformal compactification of the Minkowski space-time does not have topology . So what gives?

Remember the bit about the double cover? This turns out to be a very special feature of conformally flat space-times. The picture in the previous section is obtained by taking two copies of the standard Carter-Penrose diagram of Minkowski space and gluing them together, so that one is folded over the other. More precisely, the gluing identifies the past null infinity of one copy with the future null infinity of the other copy. A side effect is that the space-like infinity of one copy now becomes simultaneously the future and past-time-like infinities of the other copy.

Another way to think about the picture is the following: recall that the future time-infinity compactifies to a single point such that Minkowski space sits inside its past light cone. And the boundaries (the past light cone itself) corresponds to future null infinity. Swapping the word future with past we have an analogous picture for the past time-infinity. For the spatial infinity, however, we have that the Minkowski space lies completely to the outside of the light cone emanating from that point. So locally around the “point at infinity”, if we fit a copy of the spatial infinity and a copy of the future time infinity and a copy of the past time infinity, we end up having exact the right amount to piece together a local copy of Minkowski space!

Now why is this particularly nice picture usually omitted from textbooks? The reason was alluded to earlier: it only works for conformally flat space-times. (A space-time is said to be conformally flat if it admits a metric conformal to it with zero curvature.) And restricting to the Einstein-vacuum equations, which asks the metric to also be Ricci-flat, means that the only solution for which such a picture can be constructed is Minkowski space. The problem is one of the mass. Consider the simplest case where the metric is the Schwarzschild metric with mass . The Schwarzschild solution is Ricci-flat, but not conformally flat. This means that it has a non-vanishing Weyl curvature. Now, the Weyl curvature is a conformal invariant, and the mass contributes asymptotically to the Weyl curvature on the order of , where is the “radial” coordinate of the metric in familiar form. The requirement that the conformal transformation be non-degenerate at the “boundaries at infinity” means that around the boundary at infinity, we have a “regular” coordinate which corresponds to , therefore in an orthonormal frame adapted to the conformal coordinates, we see that the Weyl curvature decays like in a neighborhood of the region .

Now why is this significant? Looking at the compactification procedure for Minkowski space, it is clear that we glued the two copies such that the space-time is reflectively symmetric across the surface . But such an extension is only possible if the function to be extended has no “odd” parts in its Taylor expansion. To look at it another way, to extend the function (corresponding to Weyl curvature) smoothly to the other side of , we need to match the first derivative, which in the case that the first derivative is non-vanishing requires an odd (not even) extension across the surface. This is incompatible with the desire to glue two of the same space-time together along the boundary.

One may object to the desire to glue two of the same space-time in a reflectively symmetric manner. After all, we are gluing the past boundary to a future boundary. I claim that in order to have a good way of even identifying points on the two boundaries, one needs some sort of reflection or time-translation symmetry, and this implies that the gluing will be symmetrical across that surface.

More on this topic in this review: http://relativity.livingreviews.org/Articles/lrr-2000-4/

To be precise, what I explained in the last section is quickly summarized in the paragraph before figure 3 and section 2.4 of the LR article. But that article is also one of the standard sources that I was referring to which doesn’t present the above (slightly useless) construction.

Thanks for commenting on this: your link is a reference I should’ve included in the post. I also went back and corrected a few display errors on this page.

Just wondering, which construction are you calling slightly useless?

Second, and if I may beg a little patience, how exactly does the double cover work? M’ is a double cover of the image of Minkowski space by which map? Is there a Z/2 group action that identifies the fibres?

Is there a handy reference that discusses the mathematics of this, rather than that LR article? The physics, while it rings a bell from ages past, is not meaningful to me, so even discussions of Penrose diagrams slows down the process, I’m afraid.

Many thanks for writing this, since it has been the only reference I’ve found so far that actually deals with the manifolds in question, and not merely metrics or physics.

And, of course, now I do another search after leaving this for quite some time, I actually find lots of useful geometric discussion. But, if you don’t mind, my questions still stand, because I’d be interested to see your treatment, however brief.

Again, thanks.

@David Roberts:

By slightly useless I mean passing through the double cover. Physical space times are not conformally flat. So the construction via the double cover is not useful for understanding physical spacetimes.

For your second question: as I wrote in the text, parametrize by and then is exactly the subset . The action is .

For your third question: can’t help you there. Penrose’s construction is not useful for the types of problem that is usually treated in mathematical GR (from the evolutionary PDE point of view), so the sources I know will tend not to discussion it. I write it down here more as an intellectual curiosity

OK, thanks for the clarifying remarks (here and elsewhere). I wanted to *avoid* Penrose-style stuff too 🙂

[…] field indicates the fact that it is associated to a conformal inversion (which is also used in the conformal compactification of Minkowski space). On Minkowski space, the inversion map is a conformal isometry. The vector field can be checked […]

[…] In a previous post I described a method of thinking about conformal compactifications, and I mentioned in passing that, in principle, the method should also apply to arbitrary signature pseudo-Euclidean space . A few days ago while visiting Oxford I had a conversation with Sergiu Klainerman where this came up, and we realised that we don’t actually know what the conformal compactifications are! So let me write down here the computations in case I need to think about it again in the future. […]