Decay of waves IIIa: nonlinear tails in Minkowski space redux

Before we move on to the geometric case, I want to flesh out the nonlinear case mentioned in the end of the last post a bit more. Recall that it was shown for generic nonlinear (actually semilinear; for quasilinear and worse equations we cannot use Duhamel’s principle) wave equations, if we put in compact support for the initial data, we expect the first iterate to exhibit a tail. One may ask whether it is possible that, in fact, this is an artifact of the successive approximation scheme; that in fact somehow it always transpires that a conspiracy happens, and all the higher order iterates cancel out the tail coming from the first iterate. This is rather unlikely, owing to the fact that the convergence to \phi_\infty is dominated by a geometric series. But to just make double sure, here we give a nonlinear system of wave equations such that the successive approximation scheme converges after finitely many steps (in fact, after the first iterate), and so we can also explicitly compute the rate of decay for the nonlinear tail. While the decay rate is not claimed to be generic (though it is), the existence of one such example with a fixed decay rate shows that for a statement quantifying over all nonlinear wave equations, it would be impossible to demonstrate better decay rate than the one exhibited. Read the rest of this entry »