Bubbles Bad; Ripples Good

… Data aequatione quotcunque fluentes quantitates involvente fluxiones invenire et vice versa …

Category: Has references (not self contained)

Snowflakes

It took me two tries to get out of my flat this morning. I really ought to get into the habit of looking out the window in the morning; too often do I open the front door, ready myself to step out, only to turn back to fetch my umbrella. The annoying thing about snow is that I can’t hear it, unlike the pitter-patter of rain.

Somehow or another I ended up looking at Wilson Bentley’s micro-photographs of snow crystals. And a question forms in my mind, “Why are they all so symmetrical?” If all snowflakes were to look alike, then perhaps the dynamics leading to the formation of snow crystal is stable, and the global convergence unto a completely symmetrical pattern would not be surprising. But not all snowflakes look alike. In fact, colloquially we speak of them as each completely different from every other. This implies that the dynamics of snow crystal growth should be at least somewhat sensitive to atmospheric conditions in a local scale (and perhaps to the nucleus that seeds the crystal) so that the seemingly random to-and-fro dance as the snowflake falls from the sky can effect different shapes and branches.

Now, much experimental evidence has gone to show that the formation of ice crystals tends to by catalyzed by impurities. Pure water can be supercooled, in normal pressure conditions, to temperatures below 273 Kelvin. But in these situations a single mite of impurity dropped into the water can cause the entire beaker to freeze over suddenly. Similarly, ice crystals in the upper atmosphere tend to form around impurities: bacterium floating in the air, dust or ash, or perhaps particles introduced artificially. So one may surmise that the fact that all 6 branches of a snowflake grows in the same way because, somehow, the eventual shape of the snowflake is already encoded in the original formation of the central nucleus. Let me try to explain why this hypothesis is not very convincing. I’ll make one a priori assumption, that the growth of a crystal structure is purely local, and not due to some long-range interaction.

To draw an analogy, consider a large group of acrobats. They are trying to bring themselves into a formation around a leader. Disallowing long-range interaction can be thought of requiring that the leader cannot shout out orders to individual troupe members. But we can allow passing of information by short-range interactions, i.e. whispering instructions to the people already in formation. So the leader stands alone at the start. Then he grabs on a few people nearby to form the nucleus. Then he tells each of the people he grabbed a set of instructions on how to grab more people, where to put them, and what instructions to pass on to those people (included in these instructions are instructions to be passed on to the even more remote layer of acrobats and so on). Then if the instructions were passed correctly, a completely ordered pattern will form. But as anyone who has played the game of telephone can testify, in these scenarios some errors will always work its way into the instructions. In the physical case of snowflakes, these are thermodynamical fluctuations. So some irregularities should happen. Now, if the instructions the leaders were trying to pass down were very short and easy to remember, the errors tend not to build up, and the formation will, for the most part, be correct. But keeping the message short has the drawback that the total number of formations one can form is fewer. In the snowflake case, one can imagine somehow each small group of molecules in the snow crystal can encode some fixed amount of information. If the encoding is very redundant (so the total number of shapes is small), then the thermodynamical fluctuations will not be likely to break the symmetries between the arms. But considering the large number of possible shapes of snowflakes, such encoding of information should be taxed to the limit, and small fluctuation (errors in the game of telephone) should be able to lead one arm to look drastically different from the others. One possible way to get around this difficulty would be to use some sort of self similarity principle. But this will suggest the snowflakes are true fractals, which they are not. Read the rest of this entry »

The “Hoop Conjecture” of Kip Thorne and Spherically Symmetric Space-times

Abstract. (This being a rather long post, I feel the need to write one.) In the post I first gather some miscellaneous thoughts on what the hoop conjecture is and why it is difficult to prove in general. After this motivation, I show also how the statement becomes much easier to state and prove in spherical symmetry: the entire argument collapses to an exercise in ordinary differential equations. In particular, I demonstrate a theorem that is analogous, yet slightly different, from a recent result of Markus Khuri, using much simpler machinery.

The Hoop conjecture is a proposed criterion for when a black-hole will form under gravitational collapse. Kip Thorne, in 1972 [see Thorne, Nonspherical Gravitational Collapse: a Short Review in Magic without Magic] made the conjecture that (I paraphrase here)

Horizons form when and only when a mass M gets compacted into a region whose circumference C in EVERY direction is bounded by C \lesssim M.

This conjecture, now widely under the name of “Hoop conjecture”, is deliberately vague. (This seemed to have been the trend in physics, especially in general relativity. Conjectures are often stated in such a way that half the effort spent in proving said conjectures are used to find the correct formulation of the statement itself.) Read the rest of this entry »